skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Su, Jiangtao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Abstract With the aid of high-resolution spatial and temporal observations from the Goode Solar Telescope, we present an investigation of the emergence, coalescence, and submergence of a moving magnetic feature (MMF) in the region surrounding a magnetic pore located at the periphery of a large sunspot. The results show that the MMF has a magnetic field strength greater than 500 G and is dominated by the horizontal magnetic component. We observe upflow at the inner part and downflow at the outer part, indicating a pattern of Evershed flow. The MMF emergence is accompanied by the expansion of a granule, which has several striations inside just like the twisted features found in the penumbra filament. Our analysis shows that although these striations have different properties of magnetic field and kinematics during the expansion of the granule, the overall magnetic and dynamic properties of the MMF remain stable. We find that the region where the MMF emerges and submerges becomes more penumbra-like, i.e., adjacent positive and negative values of elongated magnetic features that are parallel to each other, while the optical penumbra-like features are not apparent at the same time. Our work indicates that the dynamics of the MMF near the magnetic pore is important for the development of filamentary structure. The magnetic configuration produced by an MMF together with the elongation of a granule could thus be key to understand the formation of penumbra filaments. 
    more » « less
  3. Aims.Recurring jets are observed in the solar atmosphere. They can erupt intermittently over a long period of time. By the observation of intermittent jets, we wish to understand what causes the characteristics of the periodic eruptions. Methods.We report intermittent jets observed by the Goode Solar Telescope (GST) with the TiO Broadband Filter Imager (BFI), the Visible Imaging Spectrometer (VIS) in Hα, and the Near-InfraRed Imaging Spectropolarimeter (NIRIS). The analysis was aided and complemented by 1400 Å and 2796 Å data from the Interface Region Imaging Spectrograph (IRIS). These observational instruments allowed us to analyze the temporal characteristics of the jet events. By constructing the Hαdopplergrams, we found that the plasma first moves upward, but during the second phase of the jet, the plasma flows back. Working with time slice diagrams, we investigated the characteristics of the jet dynamics. Results.The jet continued for up to 4 h. The time-distance diagram shows that the peak of the jet has clear periodic-eruption characteristics (5 min) during 18:00 UT–18:50 UT. We also found a periodic brightening phenomenon (5 min) during the jet bursts in the observed bands in the transition region (1400 Å and 2796 Å), which may be a response to intermittent jets in the upper solar atmosphere. The time lag is 3 min. Evolutionary images in the TiO band revealed a horizontal movement of the granulation at the location of the jet. By comparison to the quiet region of the Sun, we found that the footpoint of the jet is enhanced at the center of the Hαspectral line profile, without significant changes in the line wings. This suggests prolonged heating at the footpoint of the jet. In the mixed-polarity magnetic field region of the jet, we observed the emergence of magnetic flux, its cancellation, and shear, indicating possible intermittent magnetic reconnection. This is confirmed by the nonlinear force-free field model, which was reconstructed using the magneto-friction method. Conclusions.The multiwavelength analysis indicates that the events we studied were triggered by magnetic reconnection that was caused by mixed-polarity magnetic fields. We suggest that the horizontal motion of the granulation in the photosphere drives the magnetic reconnection, which is modulated byp-mode oscillations. 
    more » « less
  4. Abstract The solar corona is two to three orders of magnitude hotter than the underlying photosphere, and the energy loss of coronal plasma is extremely strong, requiring a heating flux of over 1,000 W m − 2 to maintain its high temperature. Using the 1.6 m Goode Solar Telescope, we report a detection of ubiquitous and persistent transverse waves in umbral fibrils in the chromosphere of a strongly magnetized sunspot. The energy flux carried by these waves was estimated to be 7.52 × 10 6  W m −2 , three to four orders of magnitude stronger than the energy loss rate of plasma in active regions. Two-fluid magnetohydrodynamic simulations reproduced the high-resolution observations and showed that these waves dissipate significant energy, which is vital for coronal heating. Such transverse oscillations and the associated strong energy flux may exist in a variety of magnetized regions on the Sun, and could be the observational target of next-generation solar telescopes. 
    more » « less
  5. Abstract We report on high-resolution observations of recurrent fan-like jets by the Goode Solar Telescope in multiple wavelengths inside a sunspot group. The dynamics behavior of the jets is derived from the H α line profiles. Quantitative values for one well-identified event have been obtained, showing a maximum projected velocity of 42 km s −1 and a Doppler shift of the order of 20 km s −1 . The footpoints/roots of the jets have a lifted center on the H α line profile compared to the quiet Sun, suggesting a long-lasting heating at these locations. The magnetic field between the small sunspots in the group shows a very high resolution pattern with parasitic polarities along the intergranular lanes accompanied by high-velocity converging flows (4 km s −1 ) in the photosphere. Magnetic cancellations between the opposite polarities are observed in the vicinity of the footpoints of the jets. Along the intergranular lanes horizontal magnetic field around 1000 G is generated impulsively. Overall, all the kinetic features at the different layers through the photosphere and chromosphere favor a convection-driven reconnection scenario for the recurrent fan-like jets and evidence a site of reconnection between the photosphere and chromosphere corresponding to the intergranular lanes. 
    more » « less
  6. Context. The magnetic field is the underlying cause of solar activities. Spectropolarimetric Stokes inversions have been routinely used to extract the vector magnetic field from observations for about 40 years. In contrast, the photospheric continuum images have an observational history of more than 100 years. Aims. We suggest a new method to quickly estimate the unsigned radial component of the magnetic field, | B r |, and the transverse field, B t , just from photospheric continuum images ( I ) using deep convolutional neural networks (CNN). Methods. Two independent models, that is, I versus | B r | and I versus B t , are trained by the CNN with a residual architecture. A total of 7800 sets of data ( I , B r and B t ) covering 17 active region patches from 2011 to 2015 from the Helioseismic and Magnetic Imager are used to train and validate the models. Results. The CNN models can successfully estimate | B r | as well as B t maps in sunspot umbra, penumbra, pore, and strong network regions based on the evaluation of four active regions (test datasets). From a series of continuum images, we can also detect the emergence of a transverse magnetic field quantitatively with the trained CNN model. The three-day evolution of the averaged value of the estimated | B r | and B t from continuum images follows that from Stokes inversions well. Furthermore, our models can reproduce the nonlinear relationships between I and | B r | as well as B t , explaining why we can estimate these relationships just from continuum images. Conclusions. Our method provides an effective way to quickly estimate | B r | and B t maps from photospheric continuum images. The method can be applied to the reconstruction of the historical magnetic fields and to future observations for providing the quick look data of the magnetic fields. 
    more » « less